3 research outputs found

    The parallel computation of the smallest eigenpair of an acoustic problem with damping

    Get PDF
    Acoustic problems with damping may give rise to large quadratic eigenproblems. Efficient and parallelizable algorithms are required for solving these problems. The recently proposed Jacobi-Davidson method is well suited for parallel computing: no matrix decomposition and no back or forward substitutions are needed. This paper describes the parallel solution of the smallest eigenpair of a realistic and very large quadratic eigenproblem with the Jacobi-Davidson method

    IL-5-producing CD4+ T cells and eosinophils cooperate to enhance response to immune checkpoint blockade in breast cancer

    No full text
    Immune checkpoint blockade (ICB) has heralded a new era in cancer therapy. Research into the mechanisms underlying response to ICB has predominantly focused on T cells; however, effective immune responses require tightly regulated crosstalk between innate and adaptive immune cells. Here, we combine unbiased analysis of blood and tumors from metastatic breast cancer patients treated with ICB with mechanistic studies in mouse models of breast cancer. We observe an increase in systemic and intratumoral eosinophils in patients and mice responding to ICB treatment. Mechanistically, ICB increased IL-5 production by CD4+ T cells, stimulating elevated eosinophil production from the bone marrow, leading to systemic eosinophil expansion. Additional induction of IL-33 by ICB-cisplatin combination or recombinant IL-33 promotes intratumoral eosinophil infiltration and eosinophil-dependent CD8+ T cell activation to enhance ICB response. This work demonstrates the critical role of eosinophils in ICB response and provides proof-of-principle for eosinophil engagement to enhance ICB efficacy
    corecore